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SUMMARY

The thermodynamic and transport properties of high-temperature air

are found in closed form starting from approximate partition functions

for the major components in air and neglecting all minor components.

The compressibility, energy, entropy, the specific heats, the speed of

sound, the coefficients of viscosity and of thermal conductivity, and

the Prandtl numbers for air are tabulated from 500 ° to 15_000 ° K over a

range of pressure from O.O001 to lO0 atmospheres. The enthalpy of air

and the mol fractions of the major components of air can easily be found

from the tabulated values for compressibility and energy. It is predicted

that the Prandtl number for fully ionized air will become small compared

to unity, the order of O.Oij and this implies that boundary layers in

such flow will be very transparent to heat flux.

INTRODUCTION

It is axiomatic that the science of aerodynamics must be based on

a good understanding of the atmospheric medium through which vehicles

are to fly. Under subsonic flight conditions t air may be treated as an

ideal gas composed of rigid, rotating diatomic molecules. The thermody-

namic properties of such a gas are well known and they are accounted for

in the gas flow equations by the familiar ratio of specific heats, which

in this case is a constant. Under supersonic flight conditions, air may

be raised to temperatures where the molecules can no longer be treated

as simple, rigid rotators. At relatively low supersonic speeds, vibra-

tional energy is excited and then the specific heats become functions of

temperature. However, both the thermodynamic and transport properties

of air in vibrational excitation can be predicted with fair accuracy by

the methods of quantum statistics and kinetic theory (ref. 1), and the

air-flow relations can be modified accordingly. Eggers (ref. 2) has

calculated the effects of vibrational energy on the one-dlmensional,

inviscid flow of diatomic gases, for example.

Further changes in air properties may occur at still higher flight

velocity. Flight velocities of practical interest have now increased

from low supersonic speeds to the escape velocity, 37,000 feet per second.

Vehicles which travel at these hypervelocities excite the air to such
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high temperatures that the molecules not only vibrate but may dissociate

into atoms and even ionize. Under these conditions, the behavior of air

deviates widely from that of an ideal gas and the thermodynamic and trans-

port properties all become functions of pressure as well as of tempera-

ture. It is, of course, essential to evaluate these functions in order

to calculate the pattern of air flow about high-speed vehicles, the vis-

cous and pressure forces which result, and the heat flux which occurs

between the air and the vehicle.

The equilibrium thermodynamic properties of a gas can be calculated

with great confidence, provided the energy levels of the gas particles

and the degeneracy of these levels are known. For monatomic and diatomic

gases this information can generally be deduced from spectroscopic data

with such accuracy that the calculated thermodynamic properties can be

trusted to very high temperatures, even where experimental confirmation

is lacking. In the case of air, however, one of the important energy

terms was not known with confidence until recently, namely, the dissocia-

tion energy of molecular nitrogen. This uncertainty arose because the

available spectroscopic data were consistent with two different models

for nitrogen dissociation, one leading to a dissociation energy of 7.37

electron volts per molecule and the other to 9.76 electron volts per

molecule. At first, the lower value was widely accepted as the most

probable one (Herzberg, ref. 3). Krieger and White (ref. 4) and

Hirschfelder and Curtiss (ref. 5) have published tables of thermodynamic

properties of high-temperature air based on this value. Gaydon (ref. 6)

was perhaps one of the first advocates of the view that the higher value

was the correct one. Subsequently a number of experiments were performed

which confirmed Gaydon's opinion, among them the measurements of strong

shock waves in nitrogen made by Christian, Duff, and Yarger (ref. 7) and

the detonation studies made by Kistiakowsky, Knight, and Malin (ref. 8).

This rendered the work of references 4 and 5 obsolete, but shortly there-

after Gilmore (ref. 9) computed the chemical composition, energy, entropy,

compressibility, and pressure of air as functions of temperature and den-

sity based on the higher value for the dissociation of nitrogen. Later,

Hilsenrath and Beckett (ref. lO) published a similar table of these prop-

erties, but in much smaller increments of temperature and density. The

calculations in both of these references (9 and lO) are highly refined

in the sense that they not only account for the major components of air

and their most significant energy states, but they also take into accour_t

a large number of the higher energy states which are infrequently excited,

even at high temperatures, and most of the very minor chemical components

of air are included. Therefore these works are among the most detailed

estimates for the thermodynamic properties of air which have been made.

Also it is not likely that these works will become obsolete, since the

values of all the important energy levels used in these calculations are

now quite secure. However, it is desirable to have approximate expres-

sions for these properties in closed form which can be solved without

iteration. Such solutions would be particularly valuable, for example,

in preparing tables to be used with the method of characteristics for

calculating the flow of real air.
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In contrast to the fairly satisfactory state of development in

regard to thermodynamic properties, knowledge of the transport properties

of air at hig_h temperatures is in an elementary stage. It is generally

agreed that an accurate calculation of the transport properties should

be based on the rather rigorous theory of Chapman and Enskog for monatomic

gases (ref. ll). The extension of this theory given by Wang-Chang and

Uhlenbeck (ref. 12) would be used for molecular gases with internal

energy. For such calculations it is necessary to know the interaction

potentials which exist between the gas particles so that the so-called

collision integrals can be calculated. Hirschfelder, Curtiss, and Bird

(ref. 13) have developed the theory of intermolecular collisions to the

stage where the collision integrals and the transport properties of inert

molecular gases can be calculated with good accuracy. However, when the

air dissociates, as it does at high temperatures, the atom-atom and atom-

molecule potentials are needed, and these are not sufficiently well known

to calculate the collision integrals. At the present time, calculation

of the atom-atom and the atom-molecule potentials is being attempted by

quantum mechanical methods. However, it may be some time before these

solutions are available, and even when they are completed a formidable

obstacle to the calculation of the transport properties remains. This

occurs because two atoms may approach each other along any one of a num-

ber of potentials, depending upon the principal quantum number of the

electrons and the spatial orientation of the electron spin and orbital

momentum vectors at the time of collision. These potentials are quite

different, some are partly attractive and others are entirely repulsive.

The solutions for all of these potentials are implicit in the quantum

mechanical description of the problem. It is hoped that these potentials

might be weighted by their probabilities to yield single effective poten-

tials for each species, for if the atoms which interact along each dif-

ferent potential must be treated as a separate species in the gas, the

calculations of the transport properties will be laborious indeed, even

with electronic computing. Problems of this type are further compounded

when temperatures are considered where the air begins to ionize. In any

event, there is an urgent need for an estimate of the properties of air,

due to the demands created by the expanding realm of very high-speed

flight. Therefore, an engineering approximation for the transport prop-

erties of high-temperature air would be valuable in the interim while

more exact solutions are being prepared. Even after more precise solu-

tions are available, an approximation giving the transport properties in

closed form will be Just as desirable as it is for the thermodynamic

properties of air.

In view of the needs outlined above, it is the purpose of this paper

to develop approximate expressions for the properties of air over the

range of temperatures and pressures encountered by vehicles traversing

the atmosphere at speeds up to escape velocity. The principle which shall

be used in deriving these expressions is that they shall be made as simple

in form as possible. For the thermodynamic properties this is accomplished

by keeping only those terms which are necessary to yield a final result

within a few percent of the more exact solutions. The properties of air

which will be evaluated are the compressibility (i.e., the correction to
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the ideal gas equation of state), the energy, enthalpy, entropy, specific
heat at constant pressure and at constant density, the speed of sound,
the viscosity, thermal conductivity, and the Prandtl number. All of
these properties will be evaluated for equilibrium conditions. Because
of the finite reaction rates, these values will doubtless need to be modi-
fied for processes which involve changes in state which are rapid compared
to the rate of approach to chemical equilibrium. Nonequilibrium effects
will probably be encountered in very high-altitude flight because the
approach to equilibrium is slow at the low pressures experienced there.
However, there is experimental evidence that equilibrium is essentially
realized in flow of dissociating air under conditions encountered in
flight at moderate altitudes and speeds (ref. 14). In addition,
Hirschfelder (ref. 15) has argued that heat transfer in pure conduction
processes will correspond to equilibrium values if the reaction rate in
one direction is rapid. Therefore, the thermodynamic and transport prop-
erties of air which are based on equilibrium conditions should apply
directly to somepractical problems as well as being a convenient reference
for the nonequilibriumvalues.

SYMBOLS

• q • "i

a

ai,bi

Ai,Bi

C

Ci

%

Cp'

Cv

D

Dij

speed of sound (zero frequency)

stoichiometric coefficients for components A i and B i

components of a chemical reaction

Sutherland's constant (eq. (58))

specific heat per mol at constant density for component i

specific heat per mol at constant pressure

partial specific heat per mol at constant pressure,

xi(ci+l)
i

specific heat per mol at constant density

dissociation energy per molecule, also diffusion coefficient

binary diffusion coefficient for molecules of type i into

molecules of type J

base of natural logarithms, also electron charge

e- electron
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E

Ei

Eo

gi

gn

h

H

Hi

I

Io

J

k

kn,k'

k r

Kc

Le I

m

Mi

energy.per mol, also electric field strength

energy per mol of component i

energy per mol at zero absolute temperature

degeneracy of the ith state

degeneracy of the nth electronic state

Planck's constant

enthalpy per mol

enthalpy per mol of component i

molecular moment of inertia, also ionization energy per
molecule

resonance potential for ionization

rotational quantum number

Boltzmann constant, also thermal conductivity

reference coefficient of thermal conductivity (eq. (77))

coefficient of thermal conductivity due to molecular

collisions

coefficient of thermal conductivity due to chemical reaction

chemical equilibrium constant for concentration units

chemical equilibrium constant for pressure units

partial Lewis number, DpCp'
_k'

logarithm to the base e

mass of a gas particle

molecular weight per mol of component i

mean molecular weight per mol of a gas mixture

molecular weight per mol for undissociated molecules
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n

Bi), ...

N

No

N2

NO

0

o+

Om

P

Po

p(Ai), }P(Bi),...

Pr

pr I

Q

%

Qr

Qv

Qe

Qc

vibrational quantum number, also electronic quantum number,

also concentration in moles per unit volume

concentration of components Ai, Bi, ... in moles per unit

volume

nitrogen atom, also atoms in general

Avagadro number, molecules per tool

nitrogen plus ion, also plus ions in general

nitrogen molecule

nitric oxide

oxygen atom

oxygen plus ion

oxygen molecule

pre ssure

reference pressure, 1 atmosphere

partial pressure of components Ai, Bi, ...

Prandtl number, Cp___

partial Prandtl number, Cp'____B
_k'

total partition function

translational partition function

rotational partition function

vibrational partition function

electronic partition function

total partition function for a standard state of unit

concentration, _ Q
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%
pressure, pQ

_(Bi), ... total partition functions for components

r

re

R

S

Si

So

Sij or }s(i-j)

T

ui

Uo

U

X

xi

x(Ai)...

total partition function for a standard state of unit

Z

CL

distance between atoms

Ai, Bi, ...

distance between atoms where the potential is a minimum

universal gas constant, energy per mol deg

entropy per mol

entropy per mol of component i at 1 atmosphere pressure

collision cross section for undlssociated air molecules

collision cross section for particle i with particle j

absolute temperature

mean molecular velocity for molecule type i

mean molecular velocity for undissociated air molecules

potential energy between gas particles

mol fraction

mol fraction of component i

mol fraction of component Ai ...

compressibility, pM° or
_T M

molecular symmetry number (equal 2 for homonuclear diatomic

molecules), also polarizability

Morse function constant (eq. (61))

ratio of specific heats, Cp
Cv

fraction of molecules which are dissociated or of atoms

which are ionized
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_o

V

Oi

Do

cr

energy of the ith state

energy of the nth electronic state

dimensionless distance parameter_ r__ _ 1
r e

coefficient of viscosity

reference coefficient of viscosity (eq. (67))

mean free path for molecule type i

reference mean free path (eq. (71))

vibrational frequency

density of molecule type i

reference density (eq. (70))

collision diameter

Subscripts

P

P

s

i,j

t3r,v3e

partial derivative at constant pressure

partial derivative at constant density

partial derivative at constant entropy

indices referring to molecules type i and j

indices referring to the contribution of translational,

rotational 3 vibrational, and electronic energy modes_

respectively

THERMODYNAMIC PROPERTIES

As a preliminary_ a brief review of some of the results of

statistical mechanics will be given. This will include the definitions

of the partition functions and will summarize those relations between

these functions and the thermodynamic properties of gases which will be

used in the approximations to follow.
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Partition Functions

All of the thermodynamic properties of a gas maybe calculated from
its partition function. Consequently, the first step in determining the
properties of air is to calculate the partition functions for the
componentsin air. The partition function may be defined as

Q = gie kT

i=_

(l)

where ei is the energy of the ith state of the gas particle and gi

is the degeneracy, that is, the number of states of the particle which

have this same energy level. The energy may be due to the translational,

rotational, or vibrational motion of the particle, or to the motion of

the electrons within the particle. The temperatures being considered in

this paper are in all cases low enough that the excited nuclear energy

states may be disregarded. The usual assumption is made that no coupling

exists between the different modes of energy. Then the partition function

may be expressed as the product

Q = Qt%%% (2a)

The factors on the right side of equation (2a) are, respectively,

the partition functions associated with the translational, rotational,

vibrational, and electronic energy levels of the gas particle. Each

factor is determined independently by an equation of the same form as

equation (1). By the methods of statistical mechanics it is found that

for diatomic molecules these factors are:

Qt =\ h2 / T

h2J(J+1)

Qr = (2,y+l) e _ ah 2
J---o

_ -_ -- eQ_r-- e

n--1

co En

Qe = gne kT

n--I

(2b)

(2c)

(2d)

(2e)
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The notations used above are common ones and the derivation of the

equations may be found in any standard text on statistical mechanics,

such as reference 16 or 17. For monatomic particles, which have no modes

of rotational or vibrational energy, the rotational and vibrational par-

tition functions take the value unity. The translational and electronic

partition functions for such particles take the same form as equations (2_

and (2e), respectively.

Consistent with the stated purpose of this paper, only those

exponential terms are included in the electronic partition function

(eq. (2e)) for which the energy levels, en, are less than six times kT

at the maximum temperature considered (15,000 ° K). Actually, the levels

are so widely split in this range that the closest to this cutoff is the

sixth state of the atomic nitrogen ion, just a little more than four

times kT at 15,000 ° K.

Table I presents the atomic and molecular constants which were used

in calculating the partition functions. The molecular constants for

rotation, vibration, dissociation energy, and electronic energy levels

were taken from Herzberg (ref. 3)- The 9.76 electron-volt value for

nitrogen dissociation is used, and it is assumed that the rotational and
vibrational constants for all excited electronic states are the same as

for the ground state. The atomic energy levels are taken from Moore

(ref. 18). The constants have been rounded off to the nearest 0.5 per-

cent, and the second and third electronic energy levels of atomic nitro-

gen have been combined since they lie within 0.5 percent of each other.

The same treatment applies to the second and third electronic levels of

the atomic oxygen positive ion.

The functions which are to be used directly in the calculations to

follow are the logarithms of the partition functions. From the partition

function constants (table I) and equations (2a) through (2e), these

functions become

mQ( 2) =-7 mT- 0.42- m - e -
2

7

 uQ(o2)  T+O.11-
2

IISSO

Lu + 2e T

m p (3a)

+ 2e Zn p (3b)
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L

• • i

J

5 hn T+ 0.50 + ha + 3e-
ra Q(O) --

5e T +e - _np

ha Q(N) = 5 Zn T + 0.30 + ha _4 + lOe

2 <

Q(o+) m T + 0.5o+ io

-- w

5 ha T + 0.30 + In + 3e

+ e

826
T

+

(3c)

"T°)
+ 6e - _np

(3d)

TO .6 188.9

T + 5e T

(3e)

22000 4TO00 6T900)
5e T + e T + 5e T - Ln p (3f)

Zn Q(e-) = _ ha T - 14.24 - Zn p (3g)

where T is the temperature in degrees Kelvin and p is given in

atmospheres.

It will be surmised that those components of air which are not

represented by partition functions above are to be neglected in the

approximations which are to follow. The absence of a partition function

for nitric oxide may be found surprising, but it will be seen later that,

to the order of accuracy being considered here, the formation of nitric

oxide may be neglected in computing thermodynamic properties over a wide

range of pressure and temperature conditions, including those conditions

which will generally be encountered in high-speed flight through the

atmosphere. This occurs because NO has about the same thermodynamic

properties as an average for nitrogen and oxygen molecules, and the NO
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formation does not greatly influence the equilibrium mol fractions of

molecules and of atoms. The possible influence of nitric oxide on the

transport properties of air will be considered later.

Energy, Enthal_y, and Specific Heats for the

Components of Air

According to statistical mechanics, the energy and enthalpy per mol

of pure gas are given by the following relations

E-E°RT - T _ 3TZn_p = T

d hnQc

dT
(4)

_8 _p d ZnQp

H-Eo _n Q = T (5)

The quantities Qc and Qo are the partition functions for the standard
states of unit concentration and of unit pressure, respectively. These

are related to the total partition function by

P (6a)
Qc =_Q

Qp = pQ (6b)

and they are functions only of temperature so that it is their total

derivatives which are related to the energy and enthalpy as given in

equations (4) and (5). The quantity Eo is a constant representing the

energy of the gas at zero absolute temperature. The choice of this level

is arbitrary, but by convention Eo is taken as zero for the molecules

of nitrogen and oxygen. Then Eo for the neutral atoms is just one half

the energy of dissociation per mol of diatomic molecules, and Eo for
the ionized atoms is the sum of this dissociation energy and the energy

of ionization. With all the ionization energy attributed to the ionized

atoms, Eo for the electrons must be taken as zero, of course.

By definition the specific heats per mol of pure gas are

Cv = (7)
O
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From equations (2a), (2b), (2e), (4), and (5) it is seen that the

energy and enthalpy per mol of gas due to translation and electronic

excitation are given by

E n

n -__-_ _e

En

gne kT

(9)

,i

___TEO_t+ e= _TEO_t+ e+ i

(lO)

and the specific heats given by equations (7) and (8) can be expressed

=3+2
e

_n / _n_2

"_n - {n

Z
J

(11)

--_P)t+e= F!_ + 1
kR/t+e

(2)

Equations (9), (10), (_), and (12) give that pax of the ener_,

entha_y, and the specific heats which is due to the transitional and

electronic ener_ for either atoms or mo_cules. The contributions of

rotational and vibrational energy must _so be included for the molec_ar

case, of co_se. According to equations (2c) and (2d) the expression

(_@)r+= 1 + _ (13)V _ -

shoed be _ded to equations (9) and (i0) in order to obtain the total

ener_ and entha_y for di_omic molec_es, while
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(14)

should be added to equations (ll) and (12) to get the total specific

heats for these particles.

The entropy of a pure gas is related to its partition function by

_S=R Lu Q + T _"8 8TLUC_p (15)

and from equations (5) and (6b), the entropy of the gas at unit pressure

may be expressed

H-Eo
s (16)
R RT

The calculated values of the partition functions for a standard

state of 1 atmosphere pressure, the energy, and the specific heat at

constant density for the major components of air are given in table II

in 500 ° K increments of temperature. The concentration standardized

partition functions, the enthalpy, entropy, and the specific heat at

constant pressure are not listed since they may be easily found from the

properties tabulated and equations (6), (lO), (12), and (16). The tabu-

lated properties for each component are given for the range in tempera-

ture in which the component exists in air, at pressures between 0.O001

and lO0 atmospheres, up to the maximum temperature considered, 15,O00 ° K.

We shall now examine how these values may be used in computing the

thermodynamic properties of air.

Equilibrium Constants

In order to determine the equilibrium mol fractions for the components

of air, it will be necessary to calculate the equilibrium constants for

the chemical reactions which occur. These chemical reactions may be

expressed in the general form

aiAi _-_ _ biB i (17)

where the Ai are the reactants, the B i the products, and ai and bi

are their respective stoichiometric coefficients. The pressure equilib-

rium constant for this reaction is defined in terms of the partial

pressures
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Hpbi(Bi)

Kp _pai(Ai)

and it is related to the partition functions by (see ref. 16)

Zn Kp = - R--T-+ b i In Qp(Bi)- ai _n Qp(Ai)

where

2_Eo ---I biEo (Bi) - I aiEo (Ai)

(zs)

(19)

is the zero point energy of the products less the zero point energy of

the reactants, both referred to their standard states. The reactions

considered here are the dissociation of molecular oxygen and of molecular

nitrogen and the ionization of atomic oxygen and of atomic nitrogen.

According to equation (19) and the partition function constants given in

table I# the equilibrium constants for these reactions are

_n %(0_ _2 0) -- - _ + 2 m %(o) - In %(o_)T
(20a)

In Kp(N2 --> 2N) = 113_200- T + 2 Zn Qp(N) - Zn Qp(N2) (20b)

Kp(0-_ 0++e")

In Kp(N--> N++e -)

158 _ooo
=- + In Qp(O +) + Lu Qp(e-) - In %(01

T

= _ 168_8oo+ m Qp(N+) + _ Qp(e-)- m Qp(N)
T

(2oc)

(20d)

The concentration equilibrium constant is defined by

K c = nnbi(Bi) (21)

Hnai(Ai)

where n(Ai) and n(Bi) are, respectively, the concentrations of the

chemical reactants and products. This quantity will also be needed for

subsequent calculations, and it is obtained by replacing the pressure
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standardized partition functions, Qp, with the corresponding concentration
standardized partition functions, Qc (eq. (19)). From equation (6) it
is seen that

J

Kc = Kp(RT)_'ai'zbi (22)

The logarithmic derivatives of the equilibrium constants will also

be required later. From equations (5), (10), and (19) these become

dT T _< RT /Bi L< RT /Ai

d Zn KP d Zn Kc _, _T = T + bi - ai (24)
dT dT

.... k

The equilibrium constants and their logarithmic derivatives for the

reactions represented by equations (20a) through (20d) are listed as

functions of temperature in table III. These quantities will now be

used in calculating the component mol fractions and their derivatives.

Calculation of the Equilibrium Mol Fractions

and Their Derivatives

The possibility that approximate solutions in closed form could be

obtained for the properties of air suggests itself upon examination of

the results of Gilmore (ref. 9). His tables of the composition of air

show that there are four chemical reactions of major importance. These

are the dissociation of molecular oxygen and of molecular nitrogen, and

the ionization of atomic oxygen and of atomic nitrogen.

02->2 o (25a)

N2-->ZN (25b)

o -. o+ + e- (25c)

N -->N+ + e- (25d)

With one exception, all other reactions which occur yield component

concentrations which are the order of O.1 percent, or less, of the major

components given by the reactions above. The exception is the formation
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of nitric oxide, NO, which at sea level density may become as much as

l0 percent of the air around 5000 ° K (see ref. 9). However, even this

much nitric oxide does not strongly influence the resulting thermodynamic

properties of air, and at densities less than 0.01 normal sea level

density, where the NO is less than 1 percent, the effects are very

small.

Two distinctive features of the chemical reactions given above are

observable from Gilmore's results. The first is that at all pressures

the dissociation of oxygen is essentially complete before the dissocia-

tion of nitrogen begins. This means that these two reactions can be

treated independently for the purposes of our approximation. The second

feature is that nitrogen and oxygen atoms ionize at about the same tem-

perature and with about the same energy changes. (Note, e.g., the approx-

imate equality of the equilibrium constants for the two ionization

reactions, table III.) Consequently, it is possible to assume that once

air is completely dissociated, all atoms constitute a single species

which has the population weighted average properties of the nitrogen and

oxygen atoms. Then the problem conveniently divides itself into three

cases, and in each'case only three components of the air need to be con-

sidered simultaneously. These three cases are described as follows,

where the ratio of nitrogen to oxygen has been taken as 4 to 1.

Case Io- At relatively low temperatures, the three components of

air which may exist simultaneously are molecular nitrogen, molecular

oxygen 3 and atomic oxygen. If E is the fraction of the initial number

of moles per unit volume which have become dissociated, then the partial

pressures for these three components may be expressed

p(N ) x(N2)p= O._ Sp (26a)

P(02)=  (02)p-- p (26b)
i+_

p(o) --x(O)p-- p (26c)
l+c

where the x(Ai) are the mol fractions of component Ai. It is assumed

that the gas components each behave like an ideal gas. Then the equation

of state is

p zaT (27)

where the compressibility Z is i + c in this case. This quantity Z

is the total number of moles per initial mol of undissociated air. It

is also equal to the ratio of the initial molecular weight of

undissociated air to the mean molecular weight, Mo/_.
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The equilibrium constant for the oxygen dissociation reaction is

Kp(O_-. 2O) = p_(O)= 4_p
p(02) (l+c)(0.2-c)

(28)

Then the fraction e is found by solving the quadratic equation (28)

E -----

-o.8+/o.64 o.8<I+K#)

2 (l+Kp)

(29)

The condition of no dissociation which occurs at low temperatures is,

of course, Just the limit of case I where ¢ is zero.

Case II.- At intermediate temperatures the oxygen is completely

dissociated and the nitrogen dissociation commences. For this case, e
will be defined as the fraction of the initial air which dissociates into

nitrogen atoms. Then the compressibility Z is 1.2 + e for this case,

and the partial pressures of the components are

p(N2)= x(N2)p= o.8-____p (30a)

p(N) = x(N)p = 2c p (30b)
1.2+¢

p(O) = x(O)p = 0.4 P (30c)
i. 2+c

The equilibrium constant for the nitrogen dissociation reaction is

whence e

pa(N)

= =

is given by

4Eap

(1.2+_) (o.8-e)
(33.)

-O.4+JO.16 + 3.84 (I+_)

c = (32)
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Case III.- At high temperatures, the dissociation of nitrogen is

also complete, and the ionization of the atoms begins. For this case

we assume that the atoms are a single homogeneous species symbolized

by N. The term e will now be the fraction of the atoms which have

been ionized, and then the partial pressures become

p(N) = x(N)p = l-____p (33a)
1+¢

p(N +) = x(N+)P = _ P (33b)
l+e

p(e-) = x(e')p = _ p (33c)
l+c

Note that the compressibility Z in this case is 2(l+e).

reaction equilibrium constant is

Kp(N --_ N++e -) =

The ionization

p(N+)p(e-) _p
: _ (34)

p(N) 1-¢2

and then e becomes

i
m

£ = l+ (35)

The derivatives of the mol fraction compressibility products, Zxi,

will be needed in addition to the mol fractions. For case I, from

equations (28), (26a), (26b), and (26c) it is seen that

d¥ = l+e + (36)

_T Jp 2
(37)

[_zx(o2)] _-_ 3{_)p (38)•Z jp

[_zx(N2)]:
•jp o (39)
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where the subscript p refers to the fact that the partial derivatives

are taken at constant pressure. In order to find these same partial

derivatives at constant.density, the equilibrium constant is expressed
in concentration units

whence

4c_ 4.c2 p (4o)
Kc(02 20)= =

= + (41)
dT p

and the mol fraction derivatives at constant density take the same form

as equations (37), (38), and (39) except that the quantity (Sc/3T)p is

replaced by the quantity (8¢/3T)p found in equation (41). For case II

a similar set of equations for the derivatives occurs

d Zn Kp = <2 1 + 1 j>_>p (42a)dT 1.2+¢ 0.8-

_)Zx(N) _- -2 _Zx(Ne) _- 2 _)---_g (4-3)
_T _T _T

, zx(o)= o
_T

Finally, for case III, the equations are

d Zn _ = <2dT l+el + l_ 8<_)p (45a)

_Zx(N +) = _Zx(e-) = _Zx(N) = 2 ____e

3T _T _T 3T

($5b)

(46)

where, as before, the partial derivatives are given for constant pressure

or for constant density depending on the corresponding partial derivative

of ¢ which is used. With these quantities in hand we are in position

to calculate the energy, specific heat, entropy, and the speed of sound
for air.
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Energy, Specific Heat, Entropy, and Speedof Sound
for Air in Equilibrium

The energy per mol of air is simply the sum

E = _.xiE i
i

(47)

where the Ei are the energy per mol for component i. Generally in

aerodynamic problems the energy per fixed mass of gas is needed rather

than the energy per mol. The mass of gas in a mol of undissociated air

(29 gm) will be used as the constant reference quantity for this purpose.

Then, in dimensionless form, the energy per mol of initially undissociated
air is

EiZ_EE= Z xi m
RT RT

i

while the dimensionless enthalpy per initial mol of air becomes

+ z (49)
RT RT

The compressibility, Z 3 and the dimensionless energy, ZE/RT, which

have been calculated from the preceding equations, are listed in

tables IV(a) and IV(by and are graphed as functions of temperature in

figures 1 and 2. The enthalpy is easily obtained from these values via

equation (49). At this point it is desirable to compare the calculations

of references 9 and l0 with the results obtained above. It is not possi-

ble to compare the numerical results directly since both references 9

and lO present the properties of air as functions of temperature at con-

stant density rather than at constant pressure as is done here. However,

the results of these two references are the same, and reference lO tabu-

lates the properties in close enough intervals so that constant pressure

values can be obtained fairly accurately by interpolation. The values

for compressibility and energy interpolated from reference lO agree with

the approximate solutions within 5 percent in all cases, and generally

within 2 percent, so that on the scale of figures 1 and 2 the differences

are hardly discernible. In view of this agreement 3 it is concluded that

the solutlons presented here are useful approximations for the thermody-

namic properties of air. Therefore we shall proceed to use those approx-

imations to calculate the entropy, specific heats, and speed of sound in
air.

The entropy per initial mol of air is simply obtained from the

entropies of the components of air through the relation
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ZS = Z xi - xi Zn xi - Zn (50)T
i

where Po is the reference pressure for the standard state, in this case,

1 atmosphere. The entropy values are listed in table IV(c) and are shown

graphically in figure 3.

It is necessary to take the derivatives of the products ZE and ZH

for specific heats if the latter are to have their usual meanings, that

is, the change in energy which occurs in a fixed mass of gas per degree

temperature change. Thus the constant density specific heat per initial

mol of air is given by

I.... + T (51)
R R R \ aT/_

i i

where Ci is the derivative of energy for component i, that is, dEi/dT.

The corresponding specific heat for constant pressure is given by

i

(52)

The specific heats calculated from equations (51) and (52) are

listed in tables IV(d) and IV(e). It may be noted that when chemical

reactions occur, the difference between the specific heats per mol is

not equal to the gas constant, as in an ideal gas, but is given by

[,,., (53)

Both of the specific heat functions have the same general features.

These features are illustrated in figure 4 where the specific heat at

constant density is given as a function of temperature for pressures

of O.O001, 0.O1, and 1 atmosphere. At low temperature Cv increases

from 5/2 R to 7/2 R as the vibrational modes of energy become excited.

Then, with increasing temperature, the specific heat goes through three

distinct maxima where the chemical components change most rapidly with

temperature; the first maximum is due to the oxygen dissociation reaction,

the second to the nitrogen dissociation, and the third to the ionization

reactions. As pressure decreases, these maxima increase in sharpness and

in magnitude and they shift to lower temperatures. It has been pointed

out (ref. 16) that the values determined from the partition functions

cannot be highly accurate because the second derivatives of the partition
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functions are required, and the error in neglecting higher order terms

is magnified in the process. However, the curves of figure 4 would

merely b.e shifted slightly in temperature and have somewhat different

peak values if the calculations were more exact. Certainly the qualita-

tive features of the specific heats should be correctly given.

The specific heat values determined above enable us to calculate

the speed of sound in air. This speed of sound will be defined by

a2 = _ (54)

that is, the limiting value as the frequency of sound approaches zero.

The partial derivative given in equation (54) will not be calculated

directly# since it is not convenient to treat the entropy as an inde-

pendent variable which can be held constant (see eq. (50)). However,

equation (54) may be transformed with perfect generality into the form

a2 : 7 _G'-_)_ (55)

where 7 is the ratio of the specific heats, Cp/C v. Equation (55) is,

in turn, equivalent to

(56)

which, from the equation of state (eq. (27)), may be expressed in terms

of variables which have already been calculated

P T _)pl+ E

(57)

The dimensionless speed of sound parameter, amp/p, is listed in table IV(f)

and is plotted as a function of temperature in figure 5. The second term

on the right side of equation (57) is generally near unity, so that fig-

ure 5 is also indicative of the variation in W with temperature.

The range of pressure and temperature in which the dissociation of

oxygen, the dissociation of nitrogen, and the ionization of atoms are the
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important chemical reactions is indicated by dividing table IV into the
regions case I_ case II, and case IIIj respectively. Figure 6 presents
the sameinformation in a graphical form from which it is convenient to
Judge the chemical state of air for a given pressure and temperature.
It will be noted that boundaries between the chemical reactions corre-
spond to end points in the characteristic cycles that occur in the
thermodynamic parameters graphed in figures 1 through 5.

Aerodynamic Considerations

The thermodynamic properties obtained at this point are those
required to perform calculations of inviscid air-flow problems by the
method of characteristics. These properties are given for a range of
temperature from 500° to 15_000° K and of pressure from O.0001 to
100 atmospheres. It is of interest now to examine the altitude and
velocity at which these conditions will occur in flight. A grid of the
pressure and temperature at the stagnation point of a body in flight is
shownin figure 7 as a function of flight altitude and velocity. The
stagnation enthalpy per unit masswas simply taken as one half the veloc-
ity squared, and the stagnation pressure was related to the static pres-
sure (and thus to a!gitude) with the results of Feldman (ref. 19), who
computedthe pressure ratio developed across normal shock waves in air
at various altitudes. Generally lower temperatures and pressures will
be attained at regions other than the stagnation region, so the range of
these variables will be adequate for such cases also. At very low pres-
sures, such as occur at high altitudes or in expanded flow regions, aero-
dynamic effects may often be disregarded. However, if necessary, the
approximations of this report maybe extended to pressures below O.0001
atmosphere. It is not advisable to extend them to pressures muchgreater
than 100 atmospheres, since there occurs an increasing overlap of the
chemical reactions in air as pressure increases and, in addition 3 the
nitric oxide becomessuch a large componentof the air that it must be
considered. As a result of this overlap in the chemical reactions, the
calculated properties of air showirregularities in the region of transi-
tion from one reaction to another. Slight irregularities can be observed
at the transition regions for l0 and 100 atmosphere pressures (figs. 1
through 4), for example. However, the deviations are small at these pres-
sures and it can be seen from figure 7 that the thermodynamic properties
of air can be closely approximated in closed form over the range of con-
ditions of current interest in aerodynamics. Someof the results of these
approximations will next be used in estimating the transport properties
of hlgh-temperature air.
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TRANSPORTPROPERTIES

Collision Cross Sections

Consider first somequalitative aspects of the collisions between gas
particles. The particle trajectories are influenced by a potential U
which is negligible at long range, which maybe attractive or repulsive
at intermediate range, but which always becomesstrongly repulsive at
very short range. A particle with kinetic energy kT will not be greatly
deflected if it passes only through that part of the potential field
where IUI << kT. On the other hand, the particle will be deflected appre-
ciably if it passes where IUI >> kT. The direction of the deflection is
unimportant so far as transport properties are concerned, for it is the
absolute value of the deflection which determines the change in mass,
momentum,and energy fluxes caused by the collision. To a first approxi-
mation, the absolute value of this deflection is independent of the sign
of the potential and the effective collision diameter _ is the order
of the largest distance where U = ±kT. The effective collision cross
section S will be defined as _2.

In the rigorous treatment of the transport properties of gases, the
effective collision cross section S is found to be an integral function
of the deflection angles produced by a collision, and this integral is a
function of the relative velocity of the colliding particles• The
so-called "collision integral" is a function of temperature only which
is S times a velocity function integrated over all velocities. Thus
the collision integral maybethought of as an average effective colli-
sion cross section, and the transport coefficients can be related directly
to these integrals. However, not all the interparticle potentials have
been developed which are needed to calculate the collision integrals for
air. In the present paper then, plausible estimates of the effective
collision cross sections will be used to determine the meanfree paths
for hard elastic spheres, and for such particles the transport coeffi-
cients can be related to these meanfree paths (ref. 1). The effects of
the interaction potentials will be taken into account by letting the
spherical cross sections be appropriate functions of temperature.

The effective cross sections for collisions between diatomic
molecules can be obtained quite accurately by the collision integral
method. However, at high temperatures, the very steep repulsive portion
of the intermolecular potential is penetrated so that the molecules do
behave essentially like hard spheres. Consistent with the approximations
which are to follow, it will be sufficient to use the Sutherland formula
for the molecular cross section So

S_o (58)
S= T

where C is i12 ° K and S_, the molecular cross section at infinite

temperature, is 3.14xlO-IScm 2.
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For atomic collisions, the picture is complicated by the fact that

two atoms may approach each other along any one of a number of potentials.

U3

U2

U_

Sketch (a)

For example, the potentials between two nor-

mal nitrogen atoms are shown qualitatively

in sketch (a) (see ref. 3). The lowest lying

of these potentials, designated Uo, has the

lowest total electron spin and it is the one

normally responsible for the vibrational

energy levels observed in the stable molec-

ular state. Therefore Uo can be expressed

quantitatively from experimental spectro-

scopic data. Unfortunately, the higher lying

potentials for the atoms in air are not known

quantitatively at present, so we are reduced

to estimating an average collision cross

section for all of the potentials by means

of the known lowest lying potential Uo.

For this purpose it is assumed that the

collision diameters o are given by

Uo( )= (59)

and these diameters will be used to evaluate the coefficients of momentum

and energy transfer. A somewhat deeper penetration of the potential is

normally required for a collision to affect the particle flux, so that
the diameters o' which will be used to evaluate the diffusion

coefficients are assumed to be given by

Uo(o'): (60)

It may be pointed out that Hirschfelder and Eliason (ref. 20) have

examined the relation between values of the transport coefficients given

by the hard sphere model and by the more rigorous collision integral

method. They find that U(q) and U(o') are about-0.6kT for a wide vari-

ety of attractive potentials, that U(_) is about 0.9kT and U(o') is

about 1.6kT for a similar variety of repulsive potentials. If all the

interparticle potentials were known, it would be simple to use these

criteria to obtain a weighted average collision diameter. All the poten-

tials are known for two normal hydrogen atoms (ref. 21) and it is found

for this case that equations (59) and (60) yield values for o and o'

which agree with the weighted average collision diameters within 8 per-

cent over the range of temperatures from lO00 ° to 15,000 ° K. Of course,

there is no assurance that these same relations will hold as closely for

collisions between the atoms in air. In fact the average collision diam-

eters for normal oxygen and nitrogen atoms will probably be overestimated

by equations (59) and (60), since the shallow intermediate potentials

(such as UI and Ue, sketch (a)) must be considered for these atoms,

whereas they do not occur for hydrogen. The effect of these intermediate

potentials will be partly compensated for by the fact that some of the
atoms will be in excited electronic states which have collision diameters

the order of three times larger than the normal atoms (ref. 20). The
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fraction of atoms in excited states is small over most of the temperature
and pressure range considered so that collisions between excited parti-

cles are relatfvely rare. The encounters between an excited and a normal

atom are the ones which significantly influence the mean free paths, and
the cross sections for such collisions are about four times normal. The

fraction of each constituent in air which is excited is listed as a

function of temperature in the following table:

Fraction of Fraction of Fraction of
m

_ oxygen atoms nitrogen atoms ionized atoms

excited excited excited

4,000 0.002 0.002

6,000 .013 .025 0.012

8,000 .032 .081 .032

i0,000 .055 .153 .060

12,000 .079 .228 .089

14,000 .120

The first two excited states of atomic oxygen a_d of the atomic nitrogen

plus ion are very close to the ground state (see table I) and so they

have not been counted as excited states. It can be seen that the frac-

tion of excited particles in air will generally be less than lO percent

and in the very worst case considered about 20 percent of the atoms will

be excited. This occurs at 100 atmospheres pressure where the ionization

reaction is repressed until temperatures beyond 123000 ° K are reached and

23 percent of the nitrogen and 8 percent of the oxygen atoms are excited.

For a pure gas in which excited particles have three times normal colli-

sion diameters, the average mean free path is decreased 28 percent when

l0 percent of the particles are excited, and is decreased 45 percent

when 20 percent of the partlcles are excited. Thus the error introduced

by neglecting the long-range forces of the excited atoms is probably the

same order of magnitude and opposite in effect to the uncertainties caused

by neglecting the shortened range of the shallow, intermediate collision

potentials.

The lowest lying atom-atom potentials may be approximated by the

Morse function

(61)

where D is the dissociation energy and _ is the dimensionless distance

parameter (r/re-l); re is the interatomic distance at which Uo is a

minimum (sketch (a))9 B is a constant related to the vibrational fre-

quency v of the stable molecule and is given by v(_I/2D) I/2. Although

the Morse function is not +ery accurate at long ranges, it will be needed

only at rather high temperatures where the potential is fairly well

described for IUol _ kT. The Morse function constants were taken from

Herzberg (ref. 3) and these are listed in the following table:
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Atomic
particles

0-0
N-N
N-O
0-0+
N-N+

D_k, re,
_K _ angstroms

59,000 3.24 1.207
113,200 2.96 1.094
75,400 3.18 1.151
75,200 3.L8 1.123

101,200 2.94 1.126

From equations (59) and (61), the momentumand energy transfer
collision diameter _ is given by

(62a)

and by equations (60) and (61) the diffusion collision diameter _' is

given by

re_'_1= 1 - , Zn (1 - JL 2_) (62b)

The atom-molecule collision diameters will be taken as the arithmetic

average of the atom-atom and of the molecule-molecule collision diameters.

This assumption corresponds to the concept that the collision diameter is

a measure of the effective range of the electron distribution about the

molecule or atom, and that a collision occurs whenever these electron

distributions overlap.

With the onset of ionization, several additional types of collisions

must be considered. These are the ion-atom, electron-atom, and the ion-

ion, ion-electron, or electron-electron collisions. The ion-atom colli-

sions may be treated in the same manner as the atom-atom collisions, since
the spectroscopic data for ionized molecules are available to be used in

setting up the Morse potential function between the ion and the neutral

atom. The Morse function constants for these cases, which occur in air,

are also listed in the preceding table. The ion-ion, ion-electron, and

electron-electron collision diameters all depend on long range electro-

static forces of identical magnitude. The criterion for the collision

diameter will be taken as before IU(_)I = kT. The function U in this

case is Just the coulomb potential between two charges, and the collision
diameter thus becomes

e _

= _ (63)
kT
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For electron-atom collisions, the atom will be polarized by the

approach of the electron and there will result a charge-dipole type inter-

action. In order to calculate the magnitude of this interaction, the

polarizability of the atom, _, will be needed. The polarizability is

defined as the dipole moment produced in the atom by an electric field, E,

of unit strength. The interaction energy of the induced dipole moment

with the field'is _E2/2, and when the field due to the presence of the

electron is substituted for E, this energy becomes

u --- (64)
2r 4

It will be noted that the polarizability need not be known with

great precision, since the collision diameter depends only on the fourth

root of this quantity. Experimental values of polarizability are only

given for the molecular state of oxygen and nitrogen. However, Joos

(ref. 22) gives an approximate method of calculating the polarizability

of atoms in alternating fields which, extrapolated to steady state fields,
becomes

where m in this case is the mass of an electron and Io is the

resonance potential for ionization of the atom. This resonance potential

is 9.11 e.v. for oxygen atoms and 10.28 e.v. for nitrogen atoms (ref. 23).

Using these values, one finds the polarizability is 13.2xlO-25cm a and

10.3×lO'2_cmS for oxygen and nitrogen atoms, respectively.

The collision diameters will enter the calculations to follow in

the form of a ratio with the collision diameter for two diatomic molecules

at the same temperature. These ratios were calculated by the methods

outlined above for those collisions which occur between the major com-

ponents in high-temperature air. The results are given in table V as

functions of temperature. Wherever two or more types of collision give

the same result within 5 percent, there is not much point to considering

them separately, in view of the other approximations involved. There-

fore, for such cases, the values have been weighted and averaged, and

only those final averages are given in table V. The atom-molecule cross

sections S(02-0), S(N2-N), and S(N2-0) are very close and these are all

designated by the single symbol S(N2-N). Similarly the atom-atom and

atom-lon cross sections S(0-0), S(N-N), S(N-0), S(N-N+), and S(0-O +)

are all grouped under the notation S(N-N). The atom-electron cross

sections S(N-e) and S(0-e) are given the single average value listed

under S(N-e). In the same way, all the atom-molecule and atom-atom

diffusion cross sections are given by S'(N2-N) and S'(N-N), respectively.

In view of the order of the approximations involved, the electron-atom
cross sections for diffusion are not differentiated from the cross

sections for momentum and energy transport.

+

+ . . •
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Viscosity

The viscosity of air will be calculated from the simple summation

formula for a mixture of hard spherical molecules

32 PiUiki
i

(66)

In view of the other approximations involved, a more sophisticated

formulation than this does not seem warranted. The constant 5_/32 is

chosen to agree with the value which accounts for the persistence in

velocity of the higher speed molecules (ref. 1). It will be convenient

to use, as a reference value, the viscosity which air would have at the

same temperature if the molecules did not dissociate or ionize

5_

_o = _'_ Po%ko (67)

In cgs units, this reference viscosity becomes

_o = I. 462XI0- s
gm

I+II2/T am-sec

where T is the absolute temperature in degrees Kelvin.

mean velocities is

(68)

The ratio of

(69)

and the ratio of densities, where the total number of moles per unit

volume is the same, is

Pi Mi
_=_X i
PO MO

(7o)

Under these same conditions, that is, the same mol concentration, the

ratio of mean free paths is (ref. l)

22
Mi

S I 1 + --

_o - a_T s-_iJ Mxj -
J.

J

(71)
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Then the ratio of viscosity to the reference viscosity becomes

no (72)
i

Before equation (71) can be applied to the case where ionization

occurs, it must be observed that the atom-electron collisions are not

to be counted in evaluating the atom mean free paths, nor are the ion-

electron collisions to be counted in evaluating the ion mean free paths.

This is because the mean free path which occurs in the derivation of

viscosity is the mean distance between those collisions which cause a

relatively large change in momentum of the particle being considered,

either in direction or in magnitude. Normally all collisions qualify

in this sense, but when a heavy particle like an atom or an ion collides

with an extremely light particle like an electron, there is practically

no change in the momentum of the heavy particle, and this momentum is

carried intact to the first collision with another heavy particle.

A feature of the ionized gas which should be mentioned is that charged

particles under the influence of coulomb potentials may be deflected by

the cumulative effect of many long-range collisions. Then, as pointed out

by Cohen, Spitzer, and Routly (ref. 24), the effective collision cross

section is larger than for a single collision at short range. However,

a charge-shielding effect limits the range of the coulomb potential and

where charge density is large the correction to the collision cross sec-

tion is small. For the range of variables treated here, collisions with

neutral particles generally predominate when the charge density is small.

Thus, in the first approximation, the mean free path is considered to be

a consequence of single, independent collisions as in equation (71).

The coefficients of viscosity for high-temperature air have been

calculated from equations (68), (71), and (72) and the results are pre-

sented in table VI(a) and in figure 8. The terms in the summation of

equation (72) will also be used in the evaluation of the coefficient of

thermal conductivity which follows.

Thermal Conductivity

A theory for the thermal conductivity of a chemically reacting gas

was perhaps first outlined by Nernst (ref. 25). The form in which this

theory has been developed by Hirschfelder (ref. 15) will be used here to

calculate the conductivity of high-temperature air. In this theory the

energy transfer through the gas is treated in two independent parts. The

first part is the energy transferred by molecular collisions, and this

mode of energy transfer is the one responsible for the ordinary thermal

conductivity of nonreacting gases. The second part is the energy trans-

ferred by diffusion of the molecular species and the reactions which

occur as the gas tends to maintain itself in chemical equilibrium at each
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point. Weshall first turn attention to the calculation of energy
transferred by molecular collisions. If one invokes Eucken's assumption
(ref. 26), that the internal energy is distributed amongthe gas particles
independently of their velocity distribution, then the simple linearized
expression for the coefficient of thermal conductivity in a mixed gas
becomes

• kn =_ PiUi _i Ct + Cin i

i

where Ct

and Cin t

that

is the specific heat per mol due to translational energy

the specific heat due to the internal energy. It is noted

C i = (Ct + Cint)i

and

Ct =--3R
2

whence equation (73) becomes

kn = 3--2 piuikl + M_i

i

(74)

(75)

(76)

It will be convenient to define a reference coefficient of thermal

conductivity Just as was done for the viscosity, that is, the value air

would have if it did not vibrate, dissociate, or ionize. This coefficient

will be

ko 19 R
= -_ _ _o (77)

or in cgs units

Joule

ko = 1.364 _o cm-sec OK (78)

where _o is in gm/cm-sec.

The ratio of the thermal conductivity coefficient to the reference

coefficient becomes



NACATN 4150 33

L •

xl

The first factors in each term are Just the terms already calculated for

the viscosity. It may be noted that the same collisions are to be neg-

lected in this case as for viscosity. This is because these electron-

atom and electron-lon collisions have only a small effect on the magnitude

and direction for the energy flux vector of the heavy particles. Actually,

all of the electron collisions could have been neglected for the purpose

of computing viscosity, for the electrons carry a negligible fraction of

the total momentum transferred, due to their small mass. However, because

of its high velocity, an electron transports a large share of the kinetic

energy, in fact much more than a heavier gas particle. Therefore the

heat conduction terms for the electrons are needed in equation (79).

The second mode of energy transfer, which takes place whenever the
gas undergoes a chemical reaction, is due to the diffusion of the chemical

species. These particles then react with one another, giving off or

absorbing the heat of reaction and causing heat transfer which may be

considerably larger than the ordinary heat transfer due to molecular

collisions. Hirschfelder (ref. 15) has formulated this problem, but in

terms of the multicomponent diffusion coefficients which are difficult

to estimate. However, Butler and Brokaw (ref. 27) have shown how

Hirschfelder's results can be modified to make use of the binary diffu-

sion coefficients instead, and their solutions are in convenient form

for computational purposes. Moreover, Butler and Brokaw show that

Hirschfelder's method of predicting thermal conductivity agrees very well

with the experimental results for a number of gases which dissociate or

react chemically at ordinary temperatures. Therefore we shall be able

to apply this method with some confidence. That part of the coefficient

of thermal conductivity which is due to the chemical reaction will be

designated kr, and according to the results of reference 27, this may

be expressed as

R(T dT /

kr = (80)

_ Z ai (aixj-ajxi)
nDiJxi

i J

where Dij is the binary diffusion coefficient for molecules of type i

into molecules of type J, and the a i are the stoichiometric coefficients

of components Ai in the chemical reaction written in the form
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f aiAi = 0
i

(8_)

According to reference l_ the binary diffusion coefficients are given by

Now the reference coefficient of thermal conductivity (eq. (77)) can be

put in the form

95 _-_ R RR_T (83)ko
64 NoS o _Mo

Substituting equation (82) in equation (80) and dividing by equation (83),

one obtains

' i" .-'I

k_!r = 95 aT (84)

LMo(Mi+MJ)J S_- xi (aixj-ajxi)

i j

In order to simplify the computations somewhat, the differences in

mass between oxygen and nitrogen atoms will be neglected. Then, since

some of the collision cross sections may also be given the same value,

the double summations in the denominator of equation (84) take on the

relatively simple form as follows:

For case I (oxygen dissociation reaction only)

Z = S' (N2-N) _ [x(0)+2x(02)]2 + 4x(N2)_ + x(N2)
J7 So x(O)x(%) x(o) J _x(%)

i j

for case II (nitrogen dissociation reaction only)

(85)
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r..

y s= + -- +

i j 47 So x(N)x(_2) x(_2)
(86)

and finally for case III (ionization reaction only)

Z _ = E1 S' (N-N) + i S' (N_e').1 [x(N)+x(N +) ]2
So 230 x(N) x(N + )

i j

(87)

The total coefficient of thermal conductivity is just the sum, kn+k r.

The values of this sum were calculated for air and the results are pre-

sented in table VI(b) and graphed in figure 9. The coefficient of thermal

conductivity has about the same functional features with respect to tem-

perature and pressure that were observed for the specific heat (fig. 4).
The Prandtl numbers were calculated from the relation

Pr = _ - 4 ¢C__p)_I_of9
(88)

and they are listed in table Vl(c) and are graphed as functions of

temperature in figure 10.

As noted, nitrogen and oxygen have approximately equal collision

cross sections, so thatup to the point where ionization begins, air can

be treated essentially as a two-component mixture of atoms and molecules.

Then it is possible to characterize the system with a single diffusion

coefficient, and the differential equations of fluid flow may be analyzed

while keeping the terms describing heat transfer by chemical reaction

separate from the terms describing ordinary thermal conduction. This

method is followed, for example, by Fay and Riddell (ref. 28) in their

analysis for the heat transfer to the stagnation region of blunt bodies

in high-speed flight. In using such an analysis, it must be realized

that the thermodynamic and transport coefficients are defined somewhat

differently than in the present paper. The coefficients which appear

in reference 28 will be called the "partial coefficients" and they will

be designated here by a superscript prime. The partial specific heat,

the partial coefficient of thermal conductivity, the partial Prandtl num-

ber, and the partial Lewis number, respectively, are related to the

quantities defined in this paper as follows:
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Cp' =Ixi(Ci+l)

k' = kn

Pr' = Cp'
Mk'

Le' = DpCp'

Nk'

The partial Lewis number, Le' 2 appears as a coefficient for the

chemical reaction terms in reference 28. The diffusion coefficient

is the ordinary binary diffusion coefficient Dij

and from equation (83) a dimensionless group is

(89)

D

given by equation (82),

ZDOR = 0.309 IS' (N2-N)] -IkoMo So ]
(90)

The Lewis number is conveniently calculated from the expression

Le' = EDoR ZCp'/R (91)

koMo Zkn/ko

Table VII lists the calculated values for the partial coefficients

ZC_'/R, kn/ko, Pr', and Le'. The numbers Pr' and Le' are also graphed

as functions of temperature in figure ll. The partial coefficients are

not given for temperatures where ionization occurs because the air is

then at least a three-component system (neutral atoms, ionized atoms,

and electrons) and the partial coefficients, as defined, do not apply to

this case. It can be seen that Pr' is a relatively constant quantity

with an average value about 0.72. The partial Lewis number, on the other

hand, decreases as dissociation proceeds to completion. From the result

that the partial Prandtl number is approximately constant, it follows

that the factor C_'/Mk' decreases as _-i. The factor D0/M increases

at about the same _ate (see eq. (82) or (90)), and the product of these

two factors is relatively constant; thus the partial Lewis number varies

approximately as M, that is, it decreases by a factor of about 2, from
about 1.4 to 0.6.

A list of conversion factors is given in table VIII for convenience

in converting the tabulated and graphed parameters into dimensioned units.



NACATN 4190 37

DISCUSSION0FRESULTS

It is convenient to summarizethe physical processes which influence
the transport properties of air in a discussion of the variations in
Prandtl numberwith temperature. At low temperatures the air is like a
pure dlatomic gas with a specific heat about 7/2 R. From equation (88),
the Prandtl number for such a gas is 14/19 or 0.74. As temperature
increases, vibrational energy is excited in the molecules so that Cp
approaches 9/2 R, while from equation (76) the thermal conductivity
approaches (23/4)(R_o/Mo). For this limit the Prandtl numberbecomes
18/23 or 0.78.

At still higher
temperatures the oxygen
dissociates and both
Cp and k go through
the pronounced maxima
shownin figures 4
and 9- To a first
approximation, k is
about proportional
to C Just as for aP
nonreacting gas. How-
ever, due to the influ-
ence of the chemical
reaction, the maximum
in k occurs at
slightly lower temper-
atures than the maximum
in specific heat as
indicated in sketch (b).

2 ZCp

-k/ko

Temperoture, T

Sketch (b)

The viscosity coefficient is not greatly influ-

enced by the oxygen dissociation, so from equation (88) it is apparent

that the Prandtl number will follow an S shaped function as shown in

sketch (b). This shape for the function can be seen in the curves of

figure lO.

At the temperature where oxygen dissociation is essentially complete

and nitrogen dissociation has not yet begun, the Prandtl number can be

calculated for a two-component mixture from the known conditions that

the mol fractions are xl = 2/3 and x 2 = 1/3 and that the molecular

weights are related by M I = 2Ma (where subscript 1 refers to nitrogen

molecules and subscript 2 to oxygen atoms). If the collision cross

sections are all assumed equal, the mean free paths are related by

= (921
2+J7



38 NACA TN 4150

Then the Prandtl number becomes

= O. 72 (93)

- . • .

which checks closely with the values for Prandtl number shown in figure i0

at the transitions from oxygen to nitrogen dissociation.

As nitrogen dissociation proceeds, the Prandtl number again follows

an S shaped function of temperature for the same reasons which were

outlined for oxygen dissociation (sketch (b)). The fully dissociated

air is like a pure monatomic gas with Cp about 5/2 R and k equal

15/4 (R_/M), so that the Prandtl number approaches 2/3. The Prandtl

numbers of figure i0 go through this value of 2/3 at a temperature where

the dissociation is essentially complete but the ionization is still

negligible (Z = 2, fig. i).

Up to this point, the Prandtl numbers lie within the range from 0.6

to 1.0 in agreement with the conclusions of reference 29. However, when

ionization begins, the Prandtl number may drop to somewhat lower values.

For very small degrees of ionization it can be shown that the ratio of

electron to atom mean free path is about _ and that the coefficient of

viscosity is influenced very little by the presence of the electrons.

However, the thermal conductivity is greatly increased by the electrons

because of their high thermal velocity, and the effect is illustrated in

figure 9 by the abrupt change in slope for k where the ionization reac-

tion first begins. If the fraction of ionization, c, is so small that

chemical reaction terms may be neglected

4 + c (94)

where M I is the atom mass and M2 the electron mass. It can be seen

that k increases rapidly with the onset of ionization because the

factor (2MI/M2) I/2 is large, about 230. Accordingly the Prandtl number

is found to vary as

2

3(i+230c)
(95)
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A very small value of ¢ is sufficient to reduce the Prandtl number

considerably below 2/3, the value for a pure monatomic gas. As the

ionization proceeds, however, the chemical reaction terms which were

omitted in equations (94) and (95) become predominant such that Cp

becomes approximately proportional to k again, and the Prandtl number

levels out at about 0.3 as shown in figure lO. At this point another

factor gradually predominates, namely the decrease in coefficient of

viscosity which occurs as the mean free paths become very short as a

result of the long range coulomb forces acting on the charged gas parti-

cles. Consider, for example, the completely ionized gas. The mol frac-

tion of ions (subscript l) equals the mol fraction of electrons

(subscript 2) and the collision cross sections are about equal. Then

the ratio of mean free paths is

kl i+

where, as before, the electron collisions do not count toward the ion

mean free paths. The ratio k/D is approximately given by

k ~ 15 R 4_ MM_ (97)

4 M_ l+ 4-2

and with Cp/M about 5R/MI, the Prandtl number becomes very small

C__pp_ ~ 4 i+_ M_M__ k - 3 4_ = 0.014
(98)

as shown in figure i0. With the assumption that the Prandtl number

retains its usual significance, boundary-layer regions in highly ionized

flow should be much better heat conductors than in the flow of neutral

gas particles. This result is of theoretical interest even though fully

ionized air flow will not be obtained at flight velocities below escape

speed (figs. 6 and 7).

The Prandtl number functions of figure lO are similar to those

predicted by Kaeppeler and Krause (ref. 30). Their calculations were

based on the low value for nitrogen dissociation energy and so the pres-

ent estimates exhibit more distinctly separate maxima. This is because

of the separation between the dissociation reactions which occurs when

the higher value for nitrogen dissociation energy is used. Greifinger

(ref. 31) has also made some estimates for the transport properties of

air at high temperatures. He assumes constant collision cross sections

in a manner such that, up to the point where ionization begins, his calcu-

lated Prandt! number is a constant lacking the structure shown in fig-

ure lO. However, reference 31 predicts the same order of effect due to

ionization which has been discussed here.
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J

Recall that the nitric oxide in air has been neglected and that the
calculated thermodynamic properties of air are not greatly affected by
this omission. It is not obvious that the transport properties of air
will be similarly independent of NO formation, since NO is ionized
rather easily comparedto N2 and 02 molecules. Practically all of th@
electrons which appear in air at intermediate temperatures comefrom
the NO ionization reaction. However, Gilmore finds that the quantity
of such electrons is very small, the order of 0.O1 percent or less (ref. 9);
and from equations (94) and (95) it can be judged that this amount is not
yet sufficient to alter greatly the transport properties of air.

At present there are no direct measurementsof the transport
properties for air at the high temperatures considered here. One experi-
mental comparison which can be madeat the momentis to insert the calcu-
lated coefficients into a theory for the heat transfer to a simple
aerodynamic shape, and then comparethe results with measuredheat-
transfer rates. For example, reference 32 comparesthe values for heat
flux to the stagnation region of a blunt body in high-energy air flow
which were measuredby Rose and Riddell (ref. 33) with the theoretical
predictions based on the transport coefficients developed in th_ present
report. It is found that the calculated heat flux deviates less than
lO percent from the meanof the measureddata. This is a favorable result
in view of the approximations involved in the theory and of the scatter
in the experimental data (the order of ±20 percent). It should be empha-
sized that this comparison is not a sufficient test for the reliability
of the calculated transport coefficients, as it is possible that errors
in the coefficients compensate for each other or for approximations in
the heat-transfer analysis. Nevertheless, the favorable comparison is
reassuring inasmuch as it meansthat at least a necessary condition for
the correctness of the theories is fulfilled.

CONCLUDINGREMARKS

In conclusion, the thermodynamic properties (including compressibility:

energy, entropy, specific heat, and the speed of sound) and the transport

properties (the coefficients of viscosity and thermal conductivity and

the Prandtl number) have been estimated for air at high temperatures.

These estimates were made from approximations in closed form, and it is

found that these approximations give fairly accurately the thermodynamic

properties over the range of pressures and temperatures for flight through

the atmosphere. The transport properties were calculated by methods which

have given reasonably good results for gases at ordinary temperatures and

for gases which dissociate and react chemically. Moreover, the values

calculated for the transport properties can be used to predict the same

order of heating rates that have been measured at the stagnation region

of blunt bodies in high-energy air flow. Therefore it is concluded that

the results presented in this paper are useful engineering approximations

for the properties of high-temperature air. In particular, it is an

advantage that the solutions appear in closed form because the functional
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relationships can be visualized. In addition the air properties can
conveniently be computedin very small intervals to give tables that can
be used in obtaining solutions to real air flow by the method of char-
acteristics, or for numerical solutions of boundary-layer flow. It is
expected that the calculated coefficients of viscosity and thermal con-
ductivity will prove to be lower bounds to more precise calculations or
measurements_ The prediction that the Prandtl number for highly ionized
flow will be small comparedto unity is of interest, for it implies that
boundary-layer regions in such a gas will be very transparent to heat
flux.

AmesAeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Nov. 18, 1957
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TABLE V.- COLLISION CROSS SECTIONS

500

i,ooo

1,5oo

2,000

2,500

3,000

3,500
4,000

4,500

5,000

5,500
6,000

6,500

7,000

7,500
8,000

8,500

9,000

9,500

i0,000

10,500

ll,O00

11,500

12,000

12,500

13,000

13,500

14,000

14,500

15,000

38.4

34.9

33.7

33.2

32.8
32.6

32.4

32.3

32.2

32.1

32.0

32.0

31.9

31.9

31.9
31.8

31.8

31.8

31.8

31.8

31.7

31.7

31.7

31.7

31.7

31.7

31.7

31.7

31.6

31.6

S(N2-N)

S o

0.946

•920
.889

.886

.846

.830

.815

•803

•792

.782

.773

.764

.757

•750

•743

•737

•731

.725

.720

.715

.710

•706

.7o1

•697

•693

•689

S(N-N)
S o

0.894

.838

.785

.742

.705

.676

.650

.628

.608

.591

.575

.561

.548

•536

.524

.514

•504

•495
.486

•478

.470

•463

•456
.448

•443

•437

•431
.426

.42o

.415

S(N-e)

So

S(e-e)

S o

0.397

•380

.366

•353

•342

•331

•321

•313
.304

•297

.290

.283

.281

.27o

.266

•261 16.27

.256 15.1o

•252 14•o4

•247 13.o9

•243 12.24

89•9

75.6

64.5

55.7
48.6

42.8

37.9

33•8

30•4

27.4

24•9

22.7

2o.8
19.09

17.60

S'(N2-N)

S o

0.877

•843

•817
•794

•775

•759
•745

•733

•722

•712

.703

.695
•688

.681

.674

.668

•662

.657

•652

•647
•642

•637

•633

•629

•625
•621

s'(raN)
S o

o.761

.703
•652
.611

•578

•551

•527

•5o7
.489

•473

•458

•445

.433
•422
•412

• 402
•393
•385

•377

•370

•363
•356

•35o

.342

•338

•332

•327

•322

•316

• 312

S(N2-N)= S(%-O) = S(N2-O)
S(N-N)= S(O-O)= S(mO) = S(N-N+) = S(O-O+)
S(N-e-)= S(O-e-)
s,(_-_) = s,(%-o) = S'(N_-O)
S'(N-N)= s,(o-o)= s,(mo) = S'(N-N+) = s'(o-o+)



50 NACA TN 4150

TABLE VI.- TRANSPORT PROPERTIES OF AIR

(a) Coefficient of viscosity

Ratio _/_o

Pressure, atmospheres

lO0 I0 1.0 0.i 0.01 0.001 0.0001

500 1.000 1.000 1.000 1.000 1.000 1.O00 1.000

1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

i, 500 1.000 i.000 i. 000 i. 000 1. 000 i.000 i.000

2,000 i.000 i.000 i.000 i. 000 i. 000 i.000 i.000

2,500 1.000 1.000 1.O00 1.000 1.O00 1.000 1.000

3,000 1.000 1.000 1.000 1.000 1.000 !l.O00 1.000

3,500 1.000 1.001 1.003 1.006 1.010 1.010 1.Oll

4,000 1.003 1.008 1.016 1.O20 1.022 1.024 1.032

4,500 1.010 1.022 1.029 1.033 1.038 1.055 1.096

5,000 1.022 1.036 1.043 1.051 1.074 1.128 1.181

5,500 1.036 1.052 1.060 1.086 1.146 1.209 1.227

6,000 1.050 1.067 1.090 1.148 1.228 1.257 1.259

6,500 1.072 1.090 1.139 1.229 1.276 1.289 1.277

7,000 1.089 1.124 1.208 1.294 1.317 1.309 1.273

7,500 1.112 1.175 1.283 1.332 1.342 1.315 1.221

8,000 1.143 1.238 1.342 1.371 1.355 1.291 1.086

8,5o0 1.185 1.3o7 1.386 1.392 1.354 1.220 .841
9,000 1.238 1.368 1.425 1.405 1.328 1.085 .534

Reference

coefficient,

_o, in 10 -6

ib sec gm

ft 2 cm-sec

0.558 267

.868 416

i.i00 527

1.293 619

1.461 700

1.612 772

1.751 838

1.879 899

1.999 957

2.11 i011

2.22 1062

2.32 1112

2.42 1159

2.52 1204
2.61 1247

2.69 1289

2.78 1330

2.86 1370

9,500 1.298 1.41811.447 1.404 1.267

i0,000 1.361 1.468 1.460 1.389 1.162

10,500 1.418 1.497 1.467 1.352 1.004

ii,000 1.46711.515 1.464 1.287 .806

11,500 1.509'1.529 1.450 1.190 -597

12,000 1.54911.543 1.425 1.065 .415

12,500 1.577 1.542 1.376 .908 .279

13,000 1.59211.539 1.312 .741 .1918 .0598 .0453 3.45

13,50011.617 1.528 1.230 .580 .1363 .0569 .0471 3.52

14,000 1.628 1.508 1.129 .443 .I061 .0572 .0506 3.58

14,500 1.631 1.460 .968 .306 .0843 .0576 .0543 3.65

15,000 1.640 1.436 .882 .254 .0615 .0598 .0581 3.71

•871 .280 2.94

.615 .1397 3.02

•384 .0788 3.10

.226 .0556 3.17

.1362 .0466 3.24

•0930 .0435 3.31

.0688 .0436 3.38

1408
1446

1482

1518

1552
1586
1620

1652

1684

1716

1747

1777
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TABLE VI.- TRANSPORT PROPERTIES OF AIR - Continued

hi,

: OK

5oo

i,ooo

1,5oo

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500

7,000

7,500

8,000

8,500

9,000

9,500

i0,000

10,500

ii,000

11,500

12,000

12,500

13,000

13,500

14,000

14,500

15,000

(b) Coefficient of thermal conductivity

i00 l0

1.021! 1.021

1.100 1.100

1.15o 1.15o

1.177 1.177

1.256 1.317

1.421 1.928

1.941 3.15

2.69 3.94

3.22 3.06

3.07 1.997

2.46 2.91

1.930 4.53

3.35 6.98

4.69 9.97

6.31 12.48

8.21 13.19

9.86 11.55

10.90 8.79

Io. 88 6.38
9.87 4.07

8.33 ii.18

6.84 13.44

5.59 16.25

4.79 19.56

3.34 23.0

ii.i! F27.0

17.62 31.3

20.0 35.7

23.3 42.1

25.3 45.3

Ratio k/k o

Pressure, atmospheres

1.0

1.021

i. lO0

i. 150

1.177

i. 619

3.2o
4.72

2.99

i. 714

3.29

5.99

lO.19

14.5o

15.69
12.24

7.8o

5.i0

3.26

lO.O9

15.44

19.84

i25.1

131.2

38.2

45.o

52.2

58.2
62.6

65.3

64.2

O.1

1.021

i. i00

i. 150

i. 251

2.50

5.48

3.96
i. 600

3.32

7.18

13.71

18.74

15.39

8.32

5.92

3.42

ii. 99

16.83

23.6

32.0

41.8

!52.9

163.2

7o. 9

73.2

69.8

61.5
51.i

38.7

33.1

O.O1 0.001 O.O001

Reference

coefficient,

ko, in i0 -e

Btu watt

ft sec oR cm OK

1.021

i. i00

1.150

1.460

4.63

5.02

1.719

2.91

7.34

16.63
22.2

i13.09

5.49

3.28

10.47

16.37

25.o

37-5

52.8

69.0

81.2

83.7

74.2

57.6

41.4

29.6

22.0

17.92

15.24

12.72

i. 021

i. I00

i.15o
2.09

7.67

2.19
2.11

6.04

17.65

25.8
ll.40

3.96

7.18
12.82

22.3

37.5

59.3

82.4

96.5

90.3

64.9

4o.o

24.9

117.18
I13.07

i!. 67

ii. 37

11.61

11.93

12.52

1.021

i. i00

i. 15o

3.99

5.5o
i. 465

3.71

15.o3

3o.5

i1.84

3.54

7.30

14.69

29.0

54.3

87.6

ii0.9

97-5

59.1

30.2

16.54
11.41

9.54

8.98

9.o8

9.5o

9.98

i0.73

Ii. 51

12.31

5.84 364

9.10 567

11.53 719

13.55 844

15.31 954

16.90 1053

18.35 1143

19.69 1227

21.0 1305

22.1 1379

23.3 1449

24.3 1516

25.4 1580
26.4 1642

27.3 1701

28.2 1759

29.1 1814

30.0 1868

30.8 1921

31.6 1972

32.4 2020

33.2 2070

34.0 2120

34.7 2160

35.5 2210
36.2 2250

36.9 2300

37.6 2340

38.2 2380

38.9 2420
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TABLEVI.- TRANSPORTPROPERTIESOFAIR - Concluded

L

• _ x .

(c) Prandtl number

T, Pressure, atmospheres

OK lO0 lO 1.O O.1 O.O1 O.OO1 O.O001

500 0.738 0.738 0.738 0.738 0.738 0.738 0.738

1,000 .756 .756 .756 .756 .756 .756 .756

1,500 .767 .767 .767 .767 .767 .767 .767

2,000 .773 .773 -773 .766 .724 .668 .614

2,500 .762 .751 .696 .645 .611 .654 .771

3,000 .740 .680 .627 .636 .740 .745 .714

3,500 .678 .631 .660 .744 .737 .658 .606

4,000 .640 .662 .762 .759 .619 .580 .587

4,500 .654 .743 .752 .610 .578 .611 .764

5,000 .702 .767 .611 .581 .624 .799 -993

5,500 .748 .620 .583 .617 .785 .989 .871

6,000 .763 .592 .602 .736 .969 .891 .384

6,500 .610 .592 .673 .906 .955 .383 .348

7,000 -593 .620 .796 .986 .830 .346 .337

7,500 .595 .688 .927 .969 .350 .334 .330

8,000 .620 .788 .983 .648 .332 .328 .316

8,500 .666 .891 .943 .335 .324 .321 .276

9,000 .730 .961 .807 .321 .320 .307 .1987

9,500 .806 .966 .330 .314 .316 .273 .1140

i0,000 .886 .872 .308 .310 .313 .210 .0577

10,500 .937 .310 .301 .309 .284 .1427 .0312

ii,000 .955 .294 .296 .303 .246 .0870 .0207

11,500 .947 .284 .295 .293 .1945 .0503 .0157

12,000 .908 .277 .293 .276 .1409 .0321 .0132

12,500 .728 .272 .290 .250 .0949 .0213 .0120

13,000 .275 .272 .284 .215 .0634 .0166 .0115

13,500 .251 .270 .276 .1733 .0416 .0142 .0109

14,000 .245 .269 .263 .1338 .0293 .0130 .0109

14,500 .241 .265 .237 .0903 .0202 .0119 .0109

15,000 .238 .263 .220 .0719 .0119 .0114 .0109
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Figure 2.- Energy of air as a function of temperature.
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